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ABSTRACT 
 

As wafer material feedstock and general processing 
conditions improve in PV manufacturing, the emitter 
region of the solar cell makes an increasingly dominant 
contribution to overall device recombination. This is 
particularly the case in high-efficiency cells designs such 
as PERC. These recombination effects act in addition to 
the process “trade-offs” that have been commonly 
associated with the emitter properties for some time – 
most notably device resistance, contact resistance, 
parasitic absorption of short wavelength light, shielding 
of carriers from the surface and gettering of the bulk. 
Due to these many influences, and the tendency for their 
interaction to vary over time, even on any one production 
line, it is important to monitor and optimise emitter 
properties for final device performance. Furthermore, 
when the emitter properties are continuously monitored, 
it becomes possible to implement cost-optimised control 
strategies for the diffusion process. This study presents 
emitter resistivity data paired with common end-of-line IV 
data from a high-efficiency PERC manufacturing facility. 
In the study, we found that emitter fabrication process 
variations contributed to up to 77 percent of the I-V 
parameter variations. This demonstrates the large 
contribution of variations in emitter resistivity to device 
performance and overall variance in PERC production.  
 

INTRODUCTION 
 
As PV manufacturing approaches the terawatt scale 
over the coming years, it will become increasingly 
important for PV manufacturers to adopt the more 
rigorous process analytics and control strategies in 
common use in other mature manufacturing industries 
[1,2], as well as developing their own new approaches. 
This change in the way PV manufacturing is executed is 
an example of the “Industry 4.0” revolution for “smart 
manufacturing” originating in Germany [3]. The Chinese 
government in particular has a strong agenda to 
transform its industries using Industry 4.0 approaches 
with the “Made in China 2025” strategy [4-5].  
 
There are, as yet, only limited works in the public domain 
that present and describe analytical techniques 
specifically associated with PV manufacturing [6-11]. 
The present study, using in-line manufacturing data from 
a high efficiency PERC production line, quantitatively 
shows how to optimise and control the manufacturing 
process with regard to the PV cell emitter properties. 
The resulting information provides the means to achieve 
absolute gains in cell efficiency. 
 
Process measurement and analysis are also important 
for improving product quality. Quality is a measure of a 
manufacturer’s capability to consistently make the same 
product, item by item, based on a given design 
specification [12-14]; and then to improve this design 
over time.  If PV manufacturing follows the trends of 

other medium to high value manufacturing sectors, then 
one of the main ways manufacturers will differentiate 
themselves in the future is on the basis of product quality 
[15]. Improving quality will confer many benefits to a 
manufacturer and its customers. On the manufacturers’ 
side, it will result in tighter performance distributions, 
improved yields, and accelerated progress for 
continuous improvement [16]. These factors will also 
reduce a manufacturer’s warranty liabilities. 
Furthermore, improved quality can streamline the 
product range and logistics down to the level of field 
installations [17]. From an installation perspective, 
improved quality and consistency between modules will 
improve energy yield as a system ages [18]. 
 

DATA SET 
 
The data used in this study is from 1200 cells made on a 
high efficiency PERC manufacturing line. The data 
includes end-of-line IV data, emitter resistivity after 
diffusion and wafer resistivity at the start of production. 
Data was collected from a set of 1200 wafers consisting 
of 200 wafers processed together on one day of the 
week for 6 weeks, to capture variation in production over 
a long period of time. Data is shown normalised and 
unscaled for commercial privacy. 
 

RESULTS 
 
Data Trends and Process Optimisation 

Figure 1 shows the common cell performance 
parameters as a function of the emitter resistivity data. A 
quadratic fit to the data shows a local optimum in the 
performance. Voc and Isc initially increase with increasing 
emitter resistivity, countered by the FF going down due 
mostly to increasing series resistance. Voc and Isc start to 
drop for high emitter resistivity, which results in a local 
optimum for the efficiency.  
 
Figure 2 shows just the Voc and Isc data, this time split by 
the six processing batches. This shows that the range of 
sheet resistivity is relatively narrow within any given 
batch, but also the relationships to the Voc and Isc is quite 
different in different batches. The apparent quadratic 
relationship in the overall data entirely arises due to the 
data in one particular batch (blue dots). Figure 3 is a 
repeat of Figure 2, but using an Exponentially Weighted 
Moving Average (EWMA) [19] calculation to more clearly 
visualise the process average state. This averaged 
“process state” data clearly shows the improvement to 
Voc and Isc continuing into the high range emitter 
resistivity values, on some of the batches. The blue and 
red batches have a softer trend between the Voc and 
emitter resistivity, with a few high emitter resistivity 
samples performing quite anomalously. For these 
batches, the Isc / emitter resistivity trend is virtually non-
existent, with the overall Isc much lower. Figure 4 shows 
the Isc / Voc relationship, also using EWMA data. The 
mutual relationship to lifetime is expected to dominate 
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this interaction [9]. Of particular interest, the samples 
from the blue and red batches clearly belong to a 
different distribution. This means the optimal emitter 
fabrication process conditions vary over time, and in 
unexpected ways, and therefore they need to be 
continually monitored and controlled. The implications of 
this are further discussed later in this document. 
 

 
Figure 1: End-of-line data for the series resistance (Rs), fill 
factor (FF), open circuit voltage (Voc), short circuit current 
(Isc) and efficiency (Eff) as a function of emitter resistivity. 

Quadratic or linear line-of-best fit also shown. 

 
Figure 2: The Voc and Isc data as a function of emitter 

resistivity, with each of the 6 processing batches 
represented by a different colour. 

 
Figure 3: The EWMA data for Voc and Isc data as a function of 

emitter resistivity, with each of the 6 processing batches 
represented by a different colour. EWMA data is a good 

representation of the process average state through each of 
the batches. Trends are more evident in this data. 

 

 
Figure 4: The EWMA data for Isc vs Voc. The dominant trend 
in this data set is related to material lifetime. The red and 
blue batches belong to a different distribution. Together 

with Figure 3, this is most likely to be due to lower Isc. 
 

Optimised Control 

Ideally it would be best to tighten the control for the 
sheet resistivity so that the distribution is more tightly 
concentrated around the optimal value – the value which 
results in the highest average efficiency. In this case, 
that is close to the mean value for the emitter resistivity. 
This is not always practical or cost effective, so it is 
useful to quantify the improvements that arise as a 
function of moving the control limits – i.e. the limits within 
which the processes should be operating 99% of the 
time [19]. Figure 5 shows the relative improvement to 
mean efficiency that could be expected as a function of 
tightened control limits. It then becomes the role of the 
individual manufacturing lines to decide which 
improvements are cost effective based on immediate 
efficiency gains. Note, however, that other benefits will 
arise from improved control as previously mentioned. 
The benefits of these improvements should also be 
taken into account, but they typically require further 
investigation to estimate. 
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Figure 5: Average efficiency (black points) that could be 

expected as a function of tightened upper (UCL) and lower 
(LCL) control limits. The red points show how many samples 

fall outside of this limit in the existing dataset and 
represents how challenging it would be to improve the 

control. Grey lines show existing control limits and dashed 
purple lines represent a proposed optimised control limit  – 
the most efficiency gain for the smallest change in control 

limits. 
 
Variance Components 

As quality manufacturing is mostly concerned with 
consistency [11-13], understanding the sources of 
variance in production becomes very important for 
achieving high quality. Numerous techniques can be 
used to calculate variance components [11]. In this case, 
owing to the relative dominance of emitter resistivity, the 
variance components were estimated with linear 
modelling and commonality analysis [11, 20]. The results 
are shown in Table 1.  
 

Table 1: Contributions of the variation in emitter resistivity 
to variance in the end-of-line I-V parameters.  

End-of-line 
parameter 

Amount of variance in the 
end-of-line parameter related 

to Emitter Resistivity 

Voc 55% 

Isc 23% 

FF 77% 

Rs 49% 

 
DISCUSSION 

 

The analyses quantitatively demonstrate that variations 
in the emitter fabrication process are a dominant source 
of variance in the end-of-line performance. An increasing 
emitter resistivity will most likely initially increase Voc and 
Isc, due to a reduced emitter region contribution to 
recombination. This is offset against an increasing Rs 
that causes the FF to decrease. There are also 
components of enhanced recombination in the emitter / 

FF relationship that can be extracted with further 
analysis, and the opportunity to moderate the resistive 
impact with the design of the contacting grid which 
collects the electricity from the cell.  
 
The initial analysis also suggested that the Voc and Isc 
start to decrease at high values of the emitter resistivity. 
This could be due to the doping being insufficient for 
shielding minority carriers from recombination at the 
front surface [21]. But Figures 2 to 4 suggest a more 
complex batch-related interaction. The two unusual 
batches are characterised by a softer Voc / emitter 
resistivity trend, and an overall lower Isc, with nearly no 
Isc / emitter resistivity trend. The series resistance data 
also shows some anomalous behaviour with many cells 
with a lower resistance than expected for the given 
emitter resistivity (not shown). Cell performance models 
can be used to test and eliminate different theories as to 
the causation of these interaction. It is unlikely to be 
explained by overall poorer wafer material quality. It 
could be an interaction between the emitter process and 
the material type. It could be explained by a different 
emitter profile – most notably, a process with a high 
surface doping concentration but same overall dose 
could reasonably cause the effects observed.  
 
This data set does show that the interaction between the 
diffusion process and the final performance is relatively 
complex. It can change over time, between different 
input material and possible different process tools. 
Ongoing monitoring is therefore important for controlling 
production. In this data set, the control range needs to 
account for the existence of the anomalous red and blue 
batches. At the same time the data can be used to better 
understand these batches, so they can be eliminated to 
improve overall performance. As these improvements 
are made, the analysis here also shows how to monitor 
the control limits for the diffusion process on an ongoing 
basis. Small improvements to the efficiency can be 
derived on an ongoing basis by optimising the control of 
the emitter resistivity.  
 

CONCLUSIONS  
 
A data set collected from a high efficiency PERC 
manufacturing line has been used to highlight three 
important issues. Firstly, the emitter resistivity data can 
be used on a continuous basis to optimise the 
manufacturing process and improve the efficiency. 
Secondly, the emitter resistivity is a significant source of 
overall variance and controlling it is important for product 
quality. Thirdly, the process relationships and optimal 
process conditions change on a continual basis, and 
continual monitoring is important for achieving optimal 
outcomes for cell efficiency and process quality.  
 
Leading manufacturers today make over a million cells a 
day, and in the future, this will likely be tens of millions of 
cells a day. Manufacturers will need measurement tools 
and analysis techniques to have confidence in the 
consistency of operations of this scale. This will become 
more important as the industry matures, and pure 
technology differentiation further diminishes. History has 
shown manufacturers will then start to differentiate on 
factors related to manufacturing execution, most notably 
quality. The Industry 4.0 approaches that are being 
embraced and encouraged by the Chinese Government 
are well suited to meeting these challenges. This 
includes better use of metrology, data platforms and 
analytics, and a focus on quality in general. 
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